Willst du ins Unendliche schreiten, geh nur im Endlichen nach allen Seiten.
--GOETHE--
To see a world in a grain of sand and heaven in a wild flower Hold infinity in the palms of your hand and eternity in an hour (William Blake)
Monday, August 29, 2005
The Inhibition of Simultaneous Stimuli - Békésy - Sensory Inhibition
When we look at a historical section of a sense organ with a large surface, we find nerve fibers going directly to the sensory ganglion, and in addition we find a large number of lateral fibers running parallel to the surface and connecting two or more end organs with one another. It was Held (1926) who showed that in the organ of Corti there are never fibers running from every hair cell more or less direclty to the modiolus of the cochlea, and also other fibers running perpendicular to these along the basilar membrane, often connecting the hair cells over nearly a half turn of the cochlea. Unfortunately these lateral connections often seem difficult to stain. (...) The lateral fibers of the cochlea are represented in Fig. 20. At present it is still uncertain to what extent these fibers are involved in the immediate process of hearing. (...) I am unable to understand how this retinal circuitry fails to produce constant oscillation. It is difficult to imagine what type of reduction of feedback is used to avoid this oscillation. Even a simples feedback system requires many precautions to prevent its going into oscillation and to cause it to return to its original equilibrium condition after a stimulus has ceased to act upon it.
Figure 20
Figure 23
For present purposes, a simple scheme is sufficient to illustrate the problem. The small dots near the bottom of Fig. 23 represent a system of receptors on the surface of the skin. The variations of a stimulus are indicated by the lowermost graph with a maximum in the middle. There are lateral connections between the receptors and nerve fibers that run upward to the first-order ganglion cells in a row a. Alongside each of these nerve fibers is a representation of its pulse rate: the number of spikes for a certain unit of time is shown. Adrian in 1928 found that the discharge rate of a sensory nerve fiber increases with the magnitude of the stimulus acting on its end organ. In the two fibers on the far left and right sides the stimulation is minimal and the discharges represent spontaneous activity. Toward the middle the stimulus intensity increases and so also does the discharge rate.
From the first layer of ganglion cells we go to a similar level above, shown at b, and from there to still higher level, c. As far as we can now discover, the result of the lateral interconnections is to reduce or "funnel" the laterally spreading stimulation to a progressively localized section of the neural pathway, as indicated by the sketch of the sensation at the top of the figure.
This simple scheme immediately brings up the question of the kind of frequency sensation that will be produced by a stimulus whose amplitude tapers away from a central maximum as shown in this figure. It is apparent that the lateral inhibition that occurs in sense organs is not the straightforward kind that we find in muscle systems. The lateral inhibition of sense organs is actually a funneling action that inhibits the smaller stimulus effects and collects the stronger effects into a common pathway.
(...)
In a crude way we can distinguish four types of inhibitory pathways, as illustrated in Fig. 24. As A is shown the simple form of lateral inhibition that has just been described. At B is shown a forward type of inhibition, at C a backward type, and at D a form of central inhibition. In human sense organs there is an interplay of all these types of interaction.
Figure 24
The question arises whether inhibition is the correct term for this whole series of phenomena. With our limited knowledge of inhibition phenomena in single neural pathways it is difficult to decide on the proper category. In addition to inhibition we might consider the term "sensory distortion", or even "disinhibition" - because it may happen that normally the neural pathways are blocked, and the effect of a stimulus is to remove the blockage. I prefer to call the effect "funneling", because even for central inhibition there is usually an increase in the magnitude of the sensation referred to certain places.
Figure 20
Figure 23
For present purposes, a simple scheme is sufficient to illustrate the problem. The small dots near the bottom of Fig. 23 represent a system of receptors on the surface of the skin. The variations of a stimulus are indicated by the lowermost graph with a maximum in the middle. There are lateral connections between the receptors and nerve fibers that run upward to the first-order ganglion cells in a row a. Alongside each of these nerve fibers is a representation of its pulse rate: the number of spikes for a certain unit of time is shown. Adrian in 1928 found that the discharge rate of a sensory nerve fiber increases with the magnitude of the stimulus acting on its end organ. In the two fibers on the far left and right sides the stimulation is minimal and the discharges represent spontaneous activity. Toward the middle the stimulus intensity increases and so also does the discharge rate.
From the first layer of ganglion cells we go to a similar level above, shown at b, and from there to still higher level, c. As far as we can now discover, the result of the lateral interconnections is to reduce or "funnel" the laterally spreading stimulation to a progressively localized section of the neural pathway, as indicated by the sketch of the sensation at the top of the figure.
This simple scheme immediately brings up the question of the kind of frequency sensation that will be produced by a stimulus whose amplitude tapers away from a central maximum as shown in this figure. It is apparent that the lateral inhibition that occurs in sense organs is not the straightforward kind that we find in muscle systems. The lateral inhibition of sense organs is actually a funneling action that inhibits the smaller stimulus effects and collects the stronger effects into a common pathway.
(...)
In a crude way we can distinguish four types of inhibitory pathways, as illustrated in Fig. 24. As A is shown the simple form of lateral inhibition that has just been described. At B is shown a forward type of inhibition, at C a backward type, and at D a form of central inhibition. In human sense organs there is an interplay of all these types of interaction.
Figure 24
The question arises whether inhibition is the correct term for this whole series of phenomena. With our limited knowledge of inhibition phenomena in single neural pathways it is difficult to decide on the proper category. In addition to inhibition we might consider the term "sensory distortion", or even "disinhibition" - because it may happen that normally the neural pathways are blocked, and the effect of a stimulus is to remove the blockage. I prefer to call the effect "funneling", because even for central inhibition there is usually an increase in the magnitude of the sensation referred to certain places.
Adaptation and Inhibition as a Means of Suppressing an Excess of Information - Békéy - Sensory Inhibition
There are many ways in which a physical activity may be so modified as to cause a human observer's perception of it to depart widely from the indications of physical apparatus. We are all aware of the existence of sensory threshold, adaptation process, and nonlinearity, all of which represent departures of perception from the regular variations of magnitude in a physical stimulus.
A further process is inhibition, whose effects are equally unexpected and often even more profound than these objects.
(...)
The important thing in a communication network is not the output level attained but the signal-to-noise ratio, for it is the ratio that determines our ability to recognize the signal a distinct from the noise. In the nervous system also it was found that "noise" is always present, in the form of general background of spontaneous activity, and a sensory effect has to be identified in the presence of this background (Hoagland, 1932). This problem is still with us.
(...)
A decade ago there was a development of communications and information theory. Already we have too much of this theory, and it is necessary to develop an inhibition theory. We shall need to discover a way of measuring the loss of information caused by a given amount of inhibition. A possible measure is the number of bits lost when the information is passed through a system divided by the number of bits introduced at the input. Such a measure I consider more important in physiology and psychology than in communications engineering.
We know that any information that we have at hand contains a number of small disturbances. These are usually eliminated by a statistical treatment. The mean value of a series of measures represents the inhibition of many small unwanted bits of information, but this procedure does not go far enough. What we are interested in is direct from of inhibition that cancels out a whole of unwanted information. The problem is of far greater scope than statisticians have ever dreamed of.
The simplest way to get rid of information is to reduce the sensitivity of the receptors. This method s used effectively in all complex living systems. For example, we know that the organ or Corti of the ear is sensitive to displacement. This sensitivity is so great that one can almost hear the Brownian movements of molecules. (...) the organ of Corti, as living tissue, requires a constant blood supply (...) hence we should expect to hear our own heartbeat with tremendous loudness. We do not so because, for one thing, there is a factor of frequency differentiating between external sound stimuli and the sound of the heartbeat. The circulatory pulsations are of low frequency, and the solution that nature made to the problem was to reduce the sensitivity of the ear to lower frequencies while leaving the sensitivity unimpaired in the range between 1000 and 4000 cycles per second (cps).
Thus it is not surprising to find that the threshold sensitivity for frequencies around 20 cps is nearly 10,000 times less than for frequencies around 1000cps. These relations may be seen in Fig.3.
Figure 3
(...)
Adaptation is a common process in living systems for the reduction of the effect of a stimulus. It is seen mainly as a progressive loss of sensitivity during a period of stimulation.
(...)
The retina seems to lose its "pattern recognition ability" quickly if the pattern is maintained on one portion of its surface. As has been proved by Riggs and others (1953) an image that is made stationary on the retina disappears partly or completely in a few seconds.
(...)
That the transients of a stimulus are of utmost importance in vision was shown in an objective way in experiments on the eye of the horseshoe crab, Limulus, by Ratliff, Hartline, and Miller (1963). Even a moderate change in the stimulus intensity, such as doubling or halving, produced an immediate change in the discharge rate of a single unit of the optic nerve, as seen in Fig. 10. This figure shows the effect of a doubling of the light stimulus, and then a return of the stimulus to its former level. The response frequency increases rapidly to more than twice its original value when the light is increased, and in about 0.5 sec returns to the base line. Then when the light intensity is dropped to its initial level, the frequency falls abruptly and soon rises to the base level once more.
Figure 10
A further process is inhibition, whose effects are equally unexpected and often even more profound than these objects.
(...)
The important thing in a communication network is not the output level attained but the signal-to-noise ratio, for it is the ratio that determines our ability to recognize the signal a distinct from the noise. In the nervous system also it was found that "noise" is always present, in the form of general background of spontaneous activity, and a sensory effect has to be identified in the presence of this background (Hoagland, 1932). This problem is still with us.
(...)
A decade ago there was a development of communications and information theory. Already we have too much of this theory, and it is necessary to develop an inhibition theory. We shall need to discover a way of measuring the loss of information caused by a given amount of inhibition. A possible measure is the number of bits lost when the information is passed through a system divided by the number of bits introduced at the input. Such a measure I consider more important in physiology and psychology than in communications engineering.
We know that any information that we have at hand contains a number of small disturbances. These are usually eliminated by a statistical treatment. The mean value of a series of measures represents the inhibition of many small unwanted bits of information, but this procedure does not go far enough. What we are interested in is direct from of inhibition that cancels out a whole of unwanted information. The problem is of far greater scope than statisticians have ever dreamed of.
The simplest way to get rid of information is to reduce the sensitivity of the receptors. This method s used effectively in all complex living systems. For example, we know that the organ or Corti of the ear is sensitive to displacement. This sensitivity is so great that one can almost hear the Brownian movements of molecules. (...) the organ of Corti, as living tissue, requires a constant blood supply (...) hence we should expect to hear our own heartbeat with tremendous loudness. We do not so because, for one thing, there is a factor of frequency differentiating between external sound stimuli and the sound of the heartbeat. The circulatory pulsations are of low frequency, and the solution that nature made to the problem was to reduce the sensitivity of the ear to lower frequencies while leaving the sensitivity unimpaired in the range between 1000 and 4000 cycles per second (cps).
Thus it is not surprising to find that the threshold sensitivity for frequencies around 20 cps is nearly 10,000 times less than for frequencies around 1000cps. These relations may be seen in Fig.3.
Figure 3
(...)
Adaptation is a common process in living systems for the reduction of the effect of a stimulus. It is seen mainly as a progressive loss of sensitivity during a period of stimulation.
(...)
The retina seems to lose its "pattern recognition ability" quickly if the pattern is maintained on one portion of its surface. As has been proved by Riggs and others (1953) an image that is made stationary on the retina disappears partly or completely in a few seconds.
(...)
That the transients of a stimulus are of utmost importance in vision was shown in an objective way in experiments on the eye of the horseshoe crab, Limulus, by Ratliff, Hartline, and Miller (1963). Even a moderate change in the stimulus intensity, such as doubling or halving, produced an immediate change in the discharge rate of a single unit of the optic nerve, as seen in Fig. 10. This figure shows the effect of a doubling of the light stimulus, and then a return of the stimulus to its former level. The response frequency increases rapidly to more than twice its original value when the light is increased, and in about 0.5 sec returns to the base line. Then when the light intensity is dropped to its initial level, the frequency falls abruptly and soon rises to the base level once more.
Figure 10
Subscribe to:
Posts (Atom)